Aug 15, 2020

FT-7900R ZUM Repeater Build - Part 2


October of last year I set out to make a MMDVM repeater with my Yaesu FT-7800 and FT-7900 transceivers. At the time, the setup was in simplex mode as I researched duplexers for the two frequency, one antenna system. And there the project sat in the shack just taking up space and collecting dust. With my invested time accumulating and the research folder growing thicker, I found several characteristics about my repeater build that I decided to change.

Enclosures and Heat


In the former computer case with all the components situated side by side, the homebrew repeater occupied a large footprint in the shack. Taking a second look at this, with the transceivers being the same size and short in height, stacking them greatly reduces the required footprint.

Since my components already have protective cases on them, placing everything into yet another case is unnecessary and only inhibits heat dissipation. In the stacked configuration with the receive radio on top, mounting them on a single Yaesu SMB-201 cooling fan will allow better open-air circulation as well as direct fan cooling to the bottom of the transmitting radio's heat sink.



Power


For now, I am keeping the repeater in the shack, so a second power supply is not needed. My Yaesu FP-1030A has more than enough capacity to run the repeater while also running my FT-991A, FTM-7250, and a few other accessories. If and when the time comes to move it out, I have a 23 amp power supply with an attached RIGrunner 4004U ready to go. This will not only power the two radios, but the RPi controller as well with it's two USB 5 volt ports. Handy dandy cotton candy!
Raspberry Pi Cooling

The Raspberry Pi 3B+ and ZUM Radio GPIO hat setup I originally made was satisfactory, but a passive cooling setup would be better. To fix this, I put the RPi in an aluminum heat sink case, added a programmable Argon One Artik fan hat on an extended GPIO, and placed the ZUM Radio board on top of that. I placed the Pi setup on it's side (GPIO edge down) to allow better natural airflow up the warm faces.

My three other Raspberry Pi 4B's require cooling so each have an Argon One fan, but in this 3B+ application it really isn't necessary, though it's a nice feature to have if things do get too warm. I programmed the fan to turn on at 42 degrees C at 10% speed. With this, the fan rarely activates, and then only briefly. The higher quality fan, reduced run time, and modified speed should greatly extend the life if this setup. After watching this setup for some time, I found the Pi temperature stays around 39 C with only passive cooling.

Here, the MMDVM repeater RPi is on the left of my shack's four-Pi setup. All computers are on a LAN switch to help reduce RF exposure in the shack.



Wiring Harness


One thing I don't like is having a harness that's too long or too short for whatever the project is, especially in the shack where extra wires can turn into interference-producing antennas. For this reason, I modified the harness and made two ends using two standard RJ45 jacks. The DIN cables were shortened to 16 inches and combined into a single RJ45. The repeater board connection was also joined to a single RJ45 jack. The two components now connect together with a standard computer network cable of whatever length is needed for the components' location. Perfect!


Antennas


The biggest change of plans may forgo the use of a duplexer and single antenna setup. Instead, I may go with a less expensive collinear setup using two Diamond X50 antennas mounted on separate tower standoff arms. I've been running a similar setup at 5 watts for a short time and found it works quite well. So far, I have one LMR400-fed antenna up and working on the tower arm.



Considering my location in a tall forested lakefront area widely known as a difficult corridor for RF, and having a tower only 55 feet tall, there is no point in spending a lot of money on any setup here. Besides, this is for experimentation and just having fun with RF. That's a big part of what this is all about, right?

Nextion Screen



Having all this figured out left me with a little unused creativity, so I redesigned my Nextion screen appearance and layout. Thanks to WA6HXG for the original Nextion 3.2 HMI file, I just moved a few things around, changed the fonts and background images, and called it a day. The colors in this photo are off, but you get the idea. Still on the to-do list are: (1) purchase and install the X50 antennas, and (2) receive frequency allocation from Wisconsin Association of Repeaters.


No comments:

Post a Comment